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1. Introduction

Electrical energy is indispensable to modern society. Human activities aimed at fulfilling daily needs constitute
a primary factor driving the increasing demand for electrical energy. Consequently, the electricity supply sector
must anticipate this trend in terms of both future quantity and capacity. The magnitude of electricity demand over
a specific period cannot be calculated with absolute certainty, leading to the challenge of operating power
generation systems continuously to meet real-time demand. Conversely, if the power supplied significantly
exceeds load demand, it results in the wastage of generation costs. On the other hand, if the generated power is
insufficient to meet consumer needs, it leads to power outages. Therefore, efforts to predict electrical load demand
are essential as a foundation for both operational planning and the future development of electric power systems.

The application of short-term electrical load forecasting based on Linear Regression and Time Series models
at PT. PLN (Persero) in Tarakan is expected to assist the company in achieving more effective energy planning
and management. With more accurate predictions, P7. PLN can optimize power plant operations, mitigate the risk
of outages, and enhance energy usage efficiency. This not only positively impacts the continuity of electricity
service in Tarakan but also contributes to the overall operational performance of PLN.

This study performs short-term electrical load forecasting modeling based on power generation data at PT.
PLN (Persero) Tarakan. The data utilized in this research consists of hourly electrical load data from November
1 to November 15, 2023.

2. Experimental Section
A. Short-Term Electrical Load Forecasting

Forecasting is the process of estimating future events based on relevant historical data and projecting them
forward using mathematical models. To achieve forecasting objectives, it is essential to employ methods
compatible with the specific data and information being analyzed. This is particularly critical in electric power
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system operations, which hold significant importance for both corporate management and operational efficiency.
Short-term forecasting is defined as the prediction of conditions over a time horizon ranging from daily to hourly
intervals. The objective of short-term forecasting in this context is to serve as a comparative study between
forecasted and actual electrical loads.

1. ARIMA Modeling

The ARIMA method is also known as the Box-Jenkins method, a model extensively developed by George
Box and Gwilym Jenkins in 1970. However, the Box-Jenkins method continues to dominate many research
fields to this day. ARIMA utilizes two algorithms, namely autoregressive (AR) and moving average (MA), and
combines an integrated element to address non-stationarity through a differencing method. A key prerequisite
for stationarity is that the data pattern must not exhibit a significant trend. To identify AR properties, the
Autocorrelation Function (ACF) is used, which represents the relationship between a series of observations in
a time series. Conversely, the Partial Autocorrelation Function (PACF) is employed to identify MA properties.
Generally, significant ACF and PACF values are observed at lag 1 or 2; it is rarely found that AR and MA
properties possess values greater than 2.

ARIMA can be applied to data regardless of whether it exhibits seasonal patterns. In general, if an ARIMA
model has an AR order of p, a degree of differencing d, and an MA order of ¢, the model is denoted as
ARIMA(p,d,q), expressed by the following equation:

Zy=A+ )z + (P —P)Zpp + -+ (¢p - ¢p—1)Zt—p + ¢)pZt—p—1 +a;+0a,++

6q0r—q M
or
¢p(BY(A — B)AZ, = 0, + 6,(B)a, 2)
where

¢p(B) =1—¢B — ¢p,B*> — - — ¢, BP
6,(B) =1—0,B — 6,B2 — - — §,B1.

A stationary time series possesses an Autocorrelation Function (ACF) that declines linearly and slowly.
The same applies to the estimated ACF derived from the data. If there is a tendency for the ACF and the
estimated ACF (i) not to decay rapidly, the function is classified as non-stationary.

The seasonal time series is described as follows:

Seasonal Autoregressive Moving Average (SARIMA) Model

The general form of SARIMA is

¢p(B)Pp, (B*)(1 — B)?(1 — B1)P1Z, = 0, + 6,(B)Oy, (B*1)a, 3)

where
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1) Box-Jenkins ARIMA Model Procedure

Data analysis was performed using the ARIMA method assisted by statistical software, specifically
MINITAB 14. The sequential steps for applying the ARIMA method are as follows:

a. Data preparation, including stationarity checks.

b. Model identification. Through ACF and PACEF plots, the appropriate model for ARIMA prediction
can be determined.

c. Determination of ARIMA parameters p, d, and gq.

d. Formulation of the ARIMA model equation. The coefficients utilized are derived from model
analysis parameters yielding the lowest Mean Squared Error (MSE) value.

e. Validation of predictive parameters.

f. Forecasting.

The subsequent step involves utilizing the optimal model for prediction. Once the best model has been
determined, it is ready to be employed for daily electrical load forecasting at PT. PLN (Persero) Tarakan.

2. Linear Regression Modeling

The linear regression model is a statistical framework used to understand and predict the relationship
between a dependent variable (target) and one or more independent variables (predictors).

The relationship between the dependent and independent variables can be expressed as a function. The
simple linear regression equation is defined as follows:

Y=a+bX @)
Where:

Y = Dependent Variable

X = Independent Variable

a = Constant (Intercept)

b = Magnitude of the response induced by the predictor (Slope)

To obtain Equation (4), the initial step is to determine the constant and the regression coefficient. The
formulas used to calculate these variables are as follows:

_ Xy-b¥x

q =TI 3)
_nXy)-XxXy

b= nYx2—(3x)> (6)

3. Forecasting Model Evaluation

Forecasting accuracy is essential in data analysis to evaluate the suitability of the utilized forecasting
models. In this study, the criterion employed to evaluate forecasting accuracy is the Mean Absolute Percentage
Error (MAPE). The equation for calculating MAPE is as follows:

Yreal - Yf t
MAPE = Ti_y(— —==55) x 100% 7
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3. Result and Discussion

The data utilized in this study is secondary data, specifically electrical load data obtained from PT. PLN
(Persero) Tarakan spanning from November 1 to November 15, 2023. This dataset consists of hourly
measurements. The training set comprises 336 data points covering the period from August 1 to August 14, 2023,
while the testing set consists of 24 data points recorded on November 15, 2023.

A. Electrical Load Forecasting Study Based on Time Series Models
1. Data Stationarity

The initial step is to assess the stationarity of the electrical load data using a time series plot. Based on
visual observation, the data exhibits trend components, as it tends to fluctuate (increase and decrease) over
time. Consequently, the data is considered non-stationary. Figure 1 shows the plot after data differencing.

Time Series Plot of differensing
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Figure 1. Time series plot after differencing.

Meanwhile, the ACF plot after differencing is presented in Figure 2.
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Figure 2. Autocorrelation Function (ACF) plot after differencing.

In addition to the time series plot, data stationarity can also be assessed using the ACF plot. The initial
ACEF plot indicates that the data is non-stationary, as it decays slowly and exhibits high correlation at early
lags. Based on this identification, differencing is required. Figure 2 demonstrates that the data has become
stationary, as the correlations at various lags rapidly approach zero, indicating the absence of any remaining
trend patterns. The PACF plot is also necessary for model analysis, as presented in Figure 3.
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Figure 3. Partial Autocorrelation Function (PACF) plot after differencing.

The criteria used for model determination are as follows:

a. If the ACF exhibits a "dying down" (tailing off) pattern and the PACF shows a "cut off," the

ARIMA model is identified as a pure Autoregressive (AR) process.

b. If the ACF shows a "cut off" and the PACF exhibits a "dying down" pattern, the ARIMA model
is identified as a pure Moving Average (MA) process.

c. If both the ACF and PACF exhibit "dying down" patterns, the ARIMA model is considered a

mixed AR and MA process.

The ACF plot in Figure 2 demonstrates a dying down pattern, characterized by lags that gradually
decrease towards zero. Additionally, the T-value at the first lag is 5.08, which slowly declines and
approaches zero. With significant spikes observed initially at lags 1 and 3, the parameter p can be
determined to be between | and 2. Consequently, it can be concluded that p = 1 (denoted as AR 1) or p =2

(denoted as AR 2).

Meanwhile, the PACF plot in Figure 3 exhibits a "dying down" pattern, declining towards zero with
insignificant T-values after the first lag; thus, the parameter ¢ is determined to be 1. Regarding the parameter
d (differencing), the value is 1, as the data achieved stationarity after the first differencing. Consequently,

the model to be utilized is the ARIMA(p,d,q) model.

To validate the determination of the ARIMA model, it is necessary to evaluate several candidate models
by selecting the one with the lowest Mean Squared Error (MSE) value derived from the identification

results.

Table 1. ARIMA Model determination using MSE.

No ARIMA Model MSE
1 (LL,1) 4403641
2 (1,1,2) 4415008
3 (1,1,0) 4400358
4 (0,1,1) 4454668
5 (0,1,2) 4399166
6 (2,1,0) 4404417
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7 2,1,1) 4414802
8 (2,1,2) 4428689

Based on the eight models evaluated above, the ARIMA(1,1,0) model yielded the lowest MSE value of
4,400,358; therefore, this model is selected for forecasting. Based on the forecasting results of the selected
model, the resulting MAPE is 14.68%.

Although the plot of the differenced data is stationary, it exhibits indications of a Seasonal ARIMA
(SARIMA) process. This is evidenced by the presence of multiple significant lags or repetitive significant
spikes at specific intervals, occurring at lags 24, 48, and so forth. Consequently, a re-analysis incorporating
the seasonal pattern is required. To understand the model's behavior, the ACF and PACF plots are
interpreted with reference to Table 2 as follows.

Table 2. Seasonal ACF and PACF Patterns.

Model ACF PACF

AR (P) Dying down (exponential decay) at Cut off (abrupt drop)
seasonal lags

MA (Q) Cut off (abrupt drop) Dying down (exponential decay)
at seasonal lags

ARIMA (P,d,Q) |Dying down (exponential decay) at| Dying down (exponential decay)
seasonal lags at seasonal lags

The SARIMA model is denoted as (p,d,q)(P,D,0)24, where the non-seasonal parameters (p,d,q) are
derived from the previously determined optimal ARIMA model, specifically (1,1,0). Consequently, eight
estimated SARIMA models are compared. To facilitate analysis, the MSE values for each model are
presented below.

Table 3. SARIMA Model determination using MSE.

SARIMA Model MSE

(1,1,0)(1,0,0)24 2932520

(1,1,0)(1,0,1)24 -

(1,1,0)(0,0,1)24 3674686

(1,1,0)(2,0,0)24 -

(1,1,0)(2,0,1)24 -

(1,1,0)(2,0,2)24 -

(1,1,0)(0,0,2)24 3194503
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(1,1,0)(1,0,2)24 3545555

Berdasarkan Among the eight SARIMA models evaluated above, the model with the lowest MSE is the
SARIMA(1,1,0)(1,0,0)24 model, with an MSE value of 2,932,520. Consequently, this model is selected for
forecasting. Based on the forecasting results of the selected model, the Mean Absolute Percentage Error
(MAPE) is 6.136030879%, or approximately 6.13%. When comparing the MAPE values of the seasonal
and non-seasonal models, the seasonal model demonstrates superior performance, as indicated by its lower
MAPE value compared to the non-seasonal counterpart.

B.  Short-Term Electrical Load Forecasting Study Based on Linear Regression Models
1. Determination of Normal Equation Coefficients

To obtain the coefficients for the linear regression equation, the normal equations must be constructed.
Prior to forming these equations, the value of each element is calculated by organizing the variables as
shown in the following table.

Table 4. Determination of normal equation elements.

N X Y Xy x2
1 1 40.600 40.600 1
2 2 39.800 79.600 4
335 335 45.700 15.309.500 112.225
336 336 41.400 13.910.400 112.896
n=336 |Xx=56.616 | Zy=14.463.700 | Zxy=2.415.155.500 | Zx?=12.700.856

Subsequently, the values of coefficients o and b are determined using Equations 5 and 6, yielding:

_ 336(2.415.155.500)~56.616 .14.463.700
336(12.700.856)—(56.616)2

b=-695

b

Subsequently, to determine the value of coefficient o using the equation above, yielding:

_ 14.463.700—(—6,95).56.616
- 336

o=44.217,8
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2. Forecasting

Calculating the short-term electrical load forecast using the linear regression model via Equation 4
yields:

Y=a+b. X
=44217,8 + (-6,95) . 337

=41.875,65

Subsequently, the comparison between the actual data (specifically from November 15, 2023) and the
results obtained from the linear regression model is presented in a tabulated format in Table 5 below.

Table 5. Overall results of |Yreas - Yorecasd| Values.

No Date Time X Yrear Yforecast | Yreat - Yforecasi|
1 15-Nov-23 01.00 337 40.000 41.875,65 -1.875,65
2 15-Nov-23 02.00 338 38.300 41.868,7 -3.562,70
3 15-Nov-23 03.00 339 36.900 41.861,75 -4.961,75
4 15-Nov-23 04.00 340 35.400 41.854,8 -6.454,80
5 15-Nov-23 05.00 341 36.300 41.847,85 -5.547,85
6 15-Nov-23 06.00 342 37.000 41.840,9 -4.840,90
7 15-Nov-23 07.00 343 37.700 41.833,95 -4.133,95
8 15-Nov-23 08.00 344 41.900 41.827 73

9 15-Nov-23 09.00 345 45.600 41.820,05 3.779,95
10 | 15-Nov-23 10.00 346 46.700 41.813,1 4.886,90
11 | 15-Nov-23 11.00 347 47.600 41.806,15 5.793,85
12 | 15-Nov-23 12.00 348 48.500 41.799,2 6.720,80
13 | 15-Nov-23 13.00 349 50.600 41.792,25 8.807,75
14 | 15-Nov-23 14.00 350 51.200 41.785,3 9.414,70
15 | 15-Nov-23 15.00 351 51.700 41.778,35 9.921,65
16 | 15-Nov-23 16.00 352 48.300 41.771,4 6.528,60
17 | 15-Nov-23 17.00 353 47.500 41.764,45 5.735,55
18 | 15-Nov-23 18.00 354 51.900 41.757,5 10.142,50
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19 | 15-Nov-23 19.00 355 52.900 41.750,55 11.149,45
20 | 15-Nov-23 20.00 356 51.700 41.743,6 9.956,40
21 | 15-Nov-23 21.00 357 50.600 41.736,65 8.863,35
22 | 15-Nov-23 22.00 358 48.800 41.729,7 7.070,30
23 | 15-Nov-23 23.00 359 46.900 41.722,75 5,177,25
24 | 15-Nov-23 00.00 360 43.200 41.715,8 1.484,20
Total 8364 | 1.087.200 1.003.097,4 78.951,35

3. MAPE Accuracy Test

After obtaining the absolute values, the MAPE accuracy test for the short-term electrical load on
November 15, 2023, is performed as follows:

MAPE = Z 7895135 1 100%
(T003.097.4 097, 7 0

= 787075612
=787%

Based on the accuracy testing conducted using MAPE, an error value of 7.87% was obtained.

4. Conclusion

Following the forecasting analysis conducted on electrical load data from PT PLN (Persero) Tarakan utilizing
both time series and linear regression methods, the following conclusions are drawn:

a. The MAPE for the ARIMA model is 14.67% and for the SARIMA model is 6.13%. These results
generally fall within the 10-20% range, indicating "Good" forecasting accuracy.

b. The MAPE for the Linear Regression model is 7.87%, which is also interpreted as "Good".

c. Forecasting using the SARIMA model proved to be the best approach, demonstrating the smallest error
margin among the three methods utilized.
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